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NMR Spectral Quantitation by Principal Component Analysis

III. A Generalized Procedure for Determination of Lineshape Variations
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We present a general procedure for automatic quantitation of
a series of spectral peaks based on principal component analysis
(PCA). PCA has been previously used for spectral quantitation of a
single resonant peak of constant shape but variable amplitude. Here
we extend this procedure to estimate all of the peak parameters: am-
plitude, position (frequency), phase and linewidth. The procedure
consists of a series of iterative steps in which the estimates of posi-
tion and phase from one stage of iteration are used to correct the
spectra prior to the next stage. The process is convergent to a sta-
ble result, typically in less than 5 iterations. If desired, remaining
linewidth variations can then be corrected. Correction of (typically)
unwanted variations of these types is important not only for direct
peak quantitation, but also as a preprocessing step for spectral data
prior to application of pattern recognition/classification techniques.
The procedure is demonstrated on simulated data and on a set of
992 31P NMR in vivo spectra taken from a kinetic study of rat muscle
energetics. The proposed procedure is robust, makes very limited
assumptions about the lineshape, and performs well with data of
low signal-to-noise ratio. C© 2002 Elsevier Science (USA)

Key Words: spectroscopy; principal component analysis; auto-
matic quantitation; peak parameters; lineshape correction.
INTRODUCTION

Sophisticated and accurate approaches to quantitation of reso-
nance peaks in a single spectrum (in either the time or frequency
domain) are widely available in the NMR community. However,
in recent years new instrumental procedures able to acquire hun-
dreds of related spectra in a short time have generated a need for
approaches which can analyze an entire set of such related spec-
tra as a whole, thus taking advantage of the relationships among
the spectra to improve the quality of the analysis. Approaches
that do this are particularly useful for spectra with low signal-to-
noise ratio (SNR) as they utilize the collective power of the
data.
1 To whom correspondence should be addressed. Fax: (212) 305-0175.
E-mail: trb11@columbia.edu.
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Principal component analysis (PCA) is one such general sta-
tistical method, which successfully estimates the amplitude of a
constant resonance peak across a series of spectra (1–7 ). Typi-
cally, in real data there are numerous peak imperfections, caused
by field inhomogeniety, susceptibility effects, and other instru-
mental/experimental conditions. Variations in the peak line-
shape, such as frequency, phase, or linewidth, can contribute
significant error to the area estimations (2). In the previous pa-
per in this series (2) we presented an iterative PCA-based au-
tomatic method for determining frequency and phase variations
among the spectra in large spectral datasets and if necessary,
subsequently correcting the data for such variations. The ap-
proach equated the PCA-based data decomposition with the
first-order Taylor expressions of the peak shape with respect
to frequency and phase variations and then solved these vector
equations by projecting them onto the subspace defined by the
first three principal components. In general, this approach was
necessarily iterative because the Taylor series expansion was
only first order and required only small variations to be able
to estimate them accurately. Thus after the spectra were cor-
rected for their estimated frequency and phase variations, a next
round of PCA decomposition was carried out. This approach
lacked clear stopping criteria since the second- and higher order
principal components (PCs) vanished as the variations were re-
moved by the successive iterations. This was noted by us (7 ) and
others (5). Recently, Witjes et al. (5), also on the basis of a Taylor
series expansion, proposed a linear least-squares approach to
estimating the phase and frequency variations by projecting the
individual spectra onto functions derived from the estimated
lineshape as determined from the shape of the first PC. This re-
sulted in an iterative procedure which converged to the correct
answer for frequency variations of the order of the linewidth but
a limited range of phase variations (±60◦). A novel approach
to linewidth correction by modeling broad lines as the sum of
frequency shifted versions of the first PC, following the removal
of frequency and phase variations, was also presented in (5).

Here we present a generalized approach to simultaneous
quantification of all peak characteristics, amplitude, frequency,
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phase, and linewidth, using an improved PCA decomposition of
each spectrum. The procedure includes novel modeling of the
linewidth variations and is superior to those reported previously
in terms of the range of variations it can determine, its stability,
and convergence. The procedure is demonstrated on simulated
data and on a set of 992 31P NMR in vivo spectra taken from a
kinetic study of rat muscle energetics.

THEORY

PCA is a well-known statistical technique and has been used
extensively to analyze large multidimensional datasets (8). It
identifies fundamental structures in a data matrix, called prin-
cipal components, through an orthogonal decomposition of the
data, using the PCs (

⇀

P1,
⇀

P2, . . .) as a basis set,

D = S1
⇀

P1 + S2
⇀

P2 + S3
⇀

P3 + · · · + Sm
⇀

Pm, [1]

where D is the data matrix (n × m, m ≤ n),
⇀

P j are (1 × m) ma-
trices that can be thought as m-dimensional vectors, and Sj are
(n × 1) matrices, which are the projections of the data along the
PCs, generally called scores ( j = 1, . . . , m). Thus we represent
D as the sum of products of (n × 1) times (1 × m) matrices.
Equation [1] can also be written in matrix form as

D = SP, [2]

where the rows of P are the
⇀

P j and the columns of S are the pro-
jections of D on

⇀

P j . To calculate S and P we need to diagonalize
the covariance matrix DTD (we assume D is real):

1

m
DTDQ = Q�. [3]

Q is the matrix of the eigenvectors of DTD and � is a diagonal
matrix of its eigenvalues, ordered by amplitude. Since DTD is
symmetric, the eigenvalues are real and nonnegative. The PCs,
⇀

P1,
⇀

P2, . . . , are the transposed eigenvectors; i.e., P = QT. Since
D = SP and PPT = I, the scores S = DPT.

Let D be a spectral dataset of n spectra, m points each, in
which the only coherent variation is the amplitude of a fixed
single lineshape

⇀

f (ω j ); i.e., each spectrum consists of the line
⇀

f (ω j ) of arbitrary magnitude plus random noise (assumed to
have the same variance for all spectra). In (1) we showed that
the normalized lineshape

⇀

f of the peak is well approximated by
the first PC,

⇀

f =
⇀

P1∑m
j=1 P1 j

[4]
while the amplitude of the peak in each spectrum can be
ND BROWN

estimated by

A =
(

m∑
j=1

P1 j

)
S1, [5]

where A = (A1, A2, . . . , An) are the amplitudes of
⇀

f in each
spectrum in D and P1 j is the component of

⇀

P1 at frequency
ω j . In fact, the estimates A calculated in this way are the best
global, linear estimates for the true amplitudes in the sense that
their mean square error over the entire dataset is minimized
(1).

In general, however, variations in peak shape and position
exist in real data. Further, since an NMR spectrum is acquired
by sine and cosine projection from a complex waveform, varia-
tion in phase between spectra must also be considered. Thus a
full analysis must be able to take into account additional varia-
tions beyond the amplitude. In (2) we showed that variations
in the phase and position of the peak resulted in a decom-
position of D in Eq. [1] in which the presence of phase and
frequency variations of the peaks was reflected in the shapes
of the PCs while the scores estimated their strengths in each
spectrum. We made no attempt in (2) to address changes in
peak shape caused by linewidth variations. In general, however,
variations in the linewidth of the peak across series of spectra
are also present. Thus to address the general case we need to
consider a lineshape

⇀

f(ω j ) which may have varying amplitude,
frequency, phase, and linewidth throughout the dataset. Ampli-
tude, frequency, and phase variations are well defined for any
peak shape since they involve fixed transformations of an arbi-
trary peak shape. Amplitude corresponds to the strength of the
shape in each spectrum, frequency to the shift of the shape along
the frequency axis, and phase to the projection of the complex
waveform along a different direction in the complex plane. Vari-
ations in linewidth, however, present a more difficult problem
since we need to characterize how the peak shape changes with
its variation. Thus, we assume for our further analysis that the
peak shape is some well parameterized function of its linewidth
(lorenzian, gaussian, etc.).

Under these conditions we then have a series of spectra,
Ai

⇀

f (ω j − ωi , τi , ϕi ), where for the i th spectrum, Ai is the peak
amplitude; ωi = ω0 + δωi is the frequency offset parame-
tized by δωi , the shift from the average frequency position
ω0; τi = τ0 + δτi is the linewidth parameter with δτi fluctu-
ation from the average linewidth τ0; and ϕi is the phase (relative
to the entire dataset). Let A, δω, δτ, and ϕ be (n × 1) matrices
containing Ai , δωi , δτi , and ϕi (i = 1, . . . , n). To determine
them, we expand

⇀

f in Taylor series in the frequency and linewidth
variations since they are generally small (7 ). Also we used the
imaginary part of the signal

⇀

f I to model the variations in phase
(here and in the rest of the paper we will use

⇀

f I to denote the
⇀

imaginary (or dispersive part) of the signal and f will refer only
to the real (or absorptive part)).
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We consider only the first-order terms in the Taylor series
since we assume δω, δτ , and ϕ are small. Thus we obtain

S1
⇀

P1 + S2
⇀

P2 + S3
⇀

P3 + S4
⇀

P4

=A

[
⇀

f cos ϕ + ∂
⇀

f
∂ω

∣∣∣∣
ω0

δω cos ϕ + ∂
⇀

f
∂τ

∣∣∣∣
τ0

δτ cos ϕ − ⇀

f I sin ϕ

]
+ ⇀ε

[6]

or

[
⇀

P1
⇀

P2
⇀

P3
⇀

P4]




S1

S2

S3

S4


 =

[
⇀

f
∂

⇀

f
∂ω

∂
⇀

f
∂τ

⇀

f I

] 


A cos ϕ

A δω cos ϕ

A δτ cos ϕ

−A sin ϕ


 + ⇀

ε,

[7]

where ⇀

ε represents all higher order terms and noise in the data.
PCA of such a dataset will yield second- and higher order PCs
that are mixtures of the shapes associated with the individual
variations. For each spectrum this is a vector equation in
the dimensional space spanned by the PCs. We solve this
vector equation by projecting both sides onto the four vectors
⇀

f, ∂
⇀

f
∂ω

, ∂
⇀

f
∂τ

, and
⇀

f I, which we construct using
⇀

P1. This yields a set
of four matrix equations, which can be solved for the unknowns
A, δω, δτ , and ϕ,




⇀

P1 · ⇀

f
⇀

P2 · ⇀

f
⇀

P3 · ⇀

f
⇀

P4 · ⇀

f
⇀

P1 · ∂
⇀

f
∂ω

⇀

P2 · ∂
⇀

f
∂ω

⇀

P3 · ∂
⇀

f
∂ω

⇀

P4 · ∂
⇀

f
∂ω

⇀

P1 · ∂
⇀

f
∂τ

⇀

P2 · ∂
⇀

f
∂τ

⇀

P3 · ∂
⇀

f
∂τ

⇀

P4 · ∂
⇀

f
∂τ

⇀

P1 · ⇀

f I ⇀

P2 · ⇀

f I ⇀

P3 · ⇀

f I ⇀

P4 · ⇀

f I







S1

S2

S3

S4




=




⇀

f · ⇀

f ∂
⇀

f
∂ω

· ⇀

f ∂
⇀

f
∂τ

· ⇀

f
⇀

f I · ⇀

f
⇀

f · ∂
⇀

f
∂ω

∂
⇀

f
∂ω

· ∂
⇀

f
∂ω

∂
⇀

f
∂τ

· ∂
⇀

f
∂ω

⇀

f I · ∂
⇀

f
∂ω

⇀

f · ∂
⇀

f
∂τ

∂
⇀

f
∂ω

· ∂
⇀

f
∂τ

∂
⇀

f
∂τ

· ∂
⇀

f
∂τ

⇀

f I · ∂
⇀

f
∂τ

⇀

f · ⇀

f I ∂
⇀

f
∂ω

· ⇀

f I ∂
⇀

f
∂τ

· ⇀

f I ⇀

f I · ⇀

f I







A cos ϕ

Aδω cos ϕ

A δτ cos ϕ

−A sin ϕ




[8]

or 


A cos ϕ

A δω cos ϕ

A δτ cos ϕ

−A sin ϕ


 = [FT · F]−1[FT · P][S], [9]

where F consists of
⇀

f, ∂
⇀

f
∂ω

, ∂
⇀

f
∂τ

, and
⇀

f I, and P and S contain the
first four PCs and their scores, respectively. Note that we have

assumed that the projections of F on ⇀

ε are zero to solve this set
of equations. This is true only if the variations are small.
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Our previous paper (2) attempted to solve these equations (ac-
tually a subset which was missing the linewidth variations) by
projections onto the PCs rather than vectors derived from

⇀

f. As
the variations were removed the higher PCs were increasingly
dominated by noise and the resultant matrices became poorly
defined. By projecting onto the vectors derived from

⇀

f the pro-
cedure is now well behaved.

Let SF be a matrix, containing the transformed scores S from
the right-hand side of Eq. [9]. Then the estimation of A, δω, δτ ,
and ϕ is straightforward:

A = SF
1

cos
(
−arctan SF

4

SF
1

)

δω = SF
2

SF
1

[10]

δτ = SF
3

SF
1

ϕ = −arctan
SF

4

SF
1

.

Equation [10] provides estimates of all peak parameters
needed for a complete quantitation. In addition the estimates
for frequency, linewidth, and phase variations can be used to
correct the data.

METHODS

Since the proposed approach is applied to the real spectral
signal in the frequency domain, it is asumed that the data are
Fourier transformed prior to PCA. Other preprocessing of a rou-
tine time-to-frequency nature may be performed, such as phasing
the entire dataset, applying a lorentzian filter, and zero-filling if
desired. In the derivation of Eq. [10] we assumed small fre-
quency and linewidth variations. In cases where the frequency
shifts in the dataset are larger than the average peak linewidth,
a crude alignment (for instance, by aligning the highest point in
the peak) could be advantageous. The interpretation of the PC’s
shapes will be easier if the spectra are initially phased so that
the real part resembles an absorption shape (through automatic
procedures or by applying phase parameters, estimated from the
sum of the spectra). Once the preprocessing is finished and the
peak of interest isolated, PCA is applied directly to the intensi-
ties of the points from the spectral region containing the peak.
This is computationally advantageous and also reduces potential
interference from the neighboring peaks.

A detailed description of the PCA correction procedure is
provided in the Appendix. To estimate the vectors in F we use
Eq. 4 to estimate

⇀

f. Given
⇀

f we calculate ∂
⇀

f
∂ω

and
⇀

f I by numerical
differentiation and Hilbert transform. In our particular imple-

mentation we perform a Hilbert transform by applying inverse
FFT to

⇀

f, swapping the real and imaginary parts and forward
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FFT (alternatively, the Hilbert transform option can be used if
available in the software package used). The calculation of ∂

⇀

f
∂τ

is
slightly more complex. We transform

⇀

f into the time domain, ap-
ply a lorentzian filter of 1 Hz, subtract the result from the original
FID, and finally transform back to frequency space. Although
exact only for lorentzian lines, this has proven to be sufficiently
accurate when applied to real data. This is the step in the pro-
cedure which requires relatively smoothly varying lineshapes.
Abrupt discontinuities would not be modeled well by this proce-
dure. Fortunately lineshapes in NMR spectra are smoothly vary-
ing. In our implementation calculating both

⇀

f I and ∂
⇀

f
∂τ

requires
Fourier transformation of

⇀

f back to the time domain. Since
⇀

P1 is
real, its Fourier transform to the time domain yields a symmetric
FID. We zero half of the points and perform the required steps
to calculate

⇀

f I and ∂
⇀

f
∂τ

as described above. Because half of the
points are zeroed, the final result needs to be scaled by a factor
of 2. When an FFT is used for the above steps, care should be
taken that

⇀

P1 is zero-filled to the closest power of 2.
Once the vectors in F are estimated, calculating the right-hand

side of Eq. [9] is straightforward. The estimates in Eq. [10] pro-
vide a full peak quantitation for each spectrum in the dataset.
Note that when the phase variations approach their maximum
(±90◦), small errors in the phase estimate can cause erroneous
change of the sign of the estimated phase. Care must be taken to
calculate the arc tangent properly; i.e., from −180◦+180◦ rather
than just −90◦ to +90◦. The estimates from Eq. [10] are relative
to the average value of the parameters. For most practical appli-
cations measuring the relative changes in the peaks across the
dataset is sufficient. However, the absolute values of the peak pa-
rameters can also be estimated. For example, the kth peak in the
dataset has amplitude Ak , peak position ω0+δωk , linewidth τ0+
δτk , and phase ϕk . ω0 and τ0 can be measured from

⇀

P1 manually.
The above estimates are then used to correct the spectra.

For the kth spectrum the phase is adjusted by multiplying the
complex data in frequency domain by exp(iϕk); both correc-
tions for frequency and linewidth variations are performed in
time domain, where the lth point of the FID is multiplied by
exp(i2π δωk l�t) and exp(π δτk l�t), resp. (� t is the dwell
time). Note that these correction factors are 1 for the first point
of the FID and thus they do not change the peak amplitude. Since
we ignored the higher order terms in Eq. [7], the correction pro-
cedure needs to be iterative. With each iteration

⇀

P1 is a better
approximation to the true peak-shape vector

⇀

f, which increases
the accuracy of estimating the vectors in F.

Correcting for linewidth variations by multiplying with neg-
ative or positive exponentials, unlike the phase and frequency
corrections, changes the noise in each spectrum and thus sig-
nificantly affects the overall error in the other estimations. For
this reason we do not attempt to correct variations in linewidth
until all other variations have been removed. In the follow-
ing section some SNR considerations for this special case are
presented.
In (1) we showed that when a single signal-related PC is
present in the data the standard deviation, σerr, of the difference
ND BROWN

between the estimated and true area, is given by

σerrt =
(

m∑
j=1

P1 j

)
σ, [11]

where σ is the standard deviation of the noise in the spectra
(assumed to be white and the same in every spectrum).

We assume that the existing linewidth variations in the dataset
are small in order that only two signal-related PCs can suffi-
ciently describe the data. If corrections for linewidth variations
have been performed, then the standard deviation of the noise in
the kth spectrum in the dataset, σk , after correction with Lk Hz
lorentzian filter, is given by

σk =
√

Lk

2m�t

(
1 − e− 2m�t

Lk
)
σ. [12]

Both σk and σ can be easily estimated in the spectral region
of the data containing only noise. In most cases σk is close to
σ since the necessary linewidth corrections are typically small.
However, even a small positive exponential can have a significant
effect on the noise level. Thus if the goal of the analysis is
obtaining accurate area estimation in the presence of linewidth
variations, the sum of the weighted scores of the first and second
PC (analogously to Eq. [1]) provides a more accurate estimate
than correcting for linewidth variations:

A =
(

m∑
j=1

P1 j

)
S1 +

(
m∑

j=1

P2 j

)
S2. [13]

The standard deviation of the difference between the esti-
mated and true area in this case is

σest =
√√√√(

m∑
j=1

P1 j

)2

+
(

m∑
j=1

P2 j

)2

σ. [14]

Derivation of Eq. [14] (as well as Eq. [11]) assumes that
⇀

P1

and
⇀

P2 do not contain noise. However, generally all the PCs con-
tain some noise (particularly

⇀

P2). Thus the quantity in Eq. [14]
slightly underestimates the true error. The true error will be even
greater if the linewidth variations in the dataset are large and
the third- and higher order PCs are signal-related. The deriva-
tion of Eq. [14] excludes the contribution of these PCs, based
on the assumption for the presence of small linewidth fluctua-
tions.

Corrections for linewidth variations are recommended when
the goal of the procedure is to end up with a single signal-related
PC, as may be the case prior to pattern recognition techniques.
Multiplication by positive and negative exponentials is obvi-
ously a suboptimal scheme for performing these corrections,

since even minimal corrections (∼1/8 of the linewidth varia-
tions) with positive exponentials in the presence of noise can be
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quite detrimental to the SNR in the resultant dataset. In view of
this although linewidth variations are calculated at each itera-
tive step, they may be corrected at the last step after sufficient
number of iterations (in our experience, no more than 10) when
the only remaining variations are due to linewidth.

The assumption of small fluctuations in the peak lineshape
and the iterative character of the proposed procedure present
a significant challenge to the stability of the procedure and its
convergence to the true estimates of the peak characteristics.
If there were no linewidth variations then the convergence to
a single PC is a robust and reliable criteria for convergence
(2). Correcting for linewidth variations, however, may amplify
the noise in the individual spectra to such an extent that all
other variations will remain undetected, even if the procedure
converges to a single PC.

Here we introduce alternative convergence criteria. The total
variance V in the data V is

V = VS + VN, [15]

where VS and VN are the signal and noise-related variance.
The components of VS are the amplitude, frequency, phase, and
linewidth variations. The total noise variance in the data is

VN = m · σ 2. [16]

Alternatively,

V = V⇀

P1 + V⇀

P2 + · · · + V⇀

Pm . [17]

During the correction procedure the contribution of VS to V
decreases, while VN remains constant (assuming that no correc-
tions for linewidth variations are performed). In PC space this
process is equivalent to reducing the number of significant PCs.
If all but amplitude variations in the data are successfully re-
moved, then a single PC will explain the entire signal variance
and the following statement will hold:

R = V − V⇀

P1

VN
≈ 1. [18]

For the purposes of investigating the convergence of the pro-
cedure, the ratio R (convergence parameter) in Eq. [18] is eval-
uated. If R → 1, then it can be concluded that the estimates of
the peak characteristics are accurate. Further, the subsequent
iterations of the correction procedure should not change this
estimate.

From the Taylor expansions in Eq. [6] it is clear that conver-
gence of the procedure can be ensured only for small variations
in frequency and linewidth. The smaller these variations, the
more accurate the representation in Eq. [10]. Alternatively, the
larger these variations, the more complicated the mixtures of

second and third derivatives making up the first 4 PCs. These
can cause erroneous frequency estimates that can shift peaks
CTRAL QUANTITATION 167

outside of the peak shape
⇀

P1 and cause breakdown of the model.
As a safeguard, in the most recent implementation of the pro-
cedure we have added a check to make sure the peak position
after correction is within the linewidth of

⇀

P1. Determining the
⇀

P1 position and, subsequently, the frequencies of the points at
the half height of the

⇀

P1 is straightforward, particularly because
typically

⇀

P1 is of high SNR. Further, the highest point in the
spectral region in each spectrum is determined. If the estimated
frequency shifts calculated during the PCA procedure will shift
the peak outside the current

⇀

P1, then the highest point of the
peak is aligned with

⇀

P1 for this iteration only.
The implementation the entire estimation and correction pro-

cedure for a series of NMR spectra requires a reference peak
that is present in all spectra in the dataset and its behavior is re-
lated only to the experimental/instrumental artifacts. Correction
factors are determined on this reference peak and then applied
to the entire spectrum. Once the experimental artifacts are re-
moved from the reference peak, the analysis focuses on the rest
of the peaks. The remaining variations in the data can be linked
with anatomical or biochemical changes that occur during the
experiment.

RESULTS

The new PCA procedure proposed here has been tested on
sets of simulated spectra, containing a single lorentzian line
with varying amplitude, frequency, phase, and linewidth and
on a dataset from stimulus–recovery experiment from a rat mus-
cle, kindly supplied by Drs. Ronald A. Meyer and Anthony T.
Paganini of Michigan State University. The entire procedure,
including corrections for frequency and phase shifts, as well
as linewidth variations, was initially implemented in the IDL
programming language (RSI, Boulder, CO) and later ported to
platform independent Java language. Both programs can be ob-
tained by request from the authors.

The first dataset was generated by multiplying a lorentzian
line (m = 512, ω0 = 0 Hz, τ0 = 0.008 s, ϕ0 = 0, amplitude
= 0.06283, corresponding to a peak with height of 1, linewidth
of 40 Hz, and peak area A = 16.1 in frequency domain) with
500 uniformly distributed random numbers between 20 and
100. We added uniformly distributed random frequency shifts
(±4 Hz) and exponentially multiplied the FIDs with uniformly
distributed random numbers to simulate linewidth variations
(±8 Hz) in the data. For the purpose of comparing the errors
in the estimated parameters we imposed linewidth variations of
the same size as the frequency shifts in radians per second. The
FIDs were then transformed to the frequency domain and the
resultant spectra randomly misphased by ±10 degrees. Finally,
500 sets of Gaussian distributed white noise (mean of 0 and a
variance of 1) were added to the spectra. The SNR of the peaks in
the resultant dataset ranged approximately from 10 to 50 (SNR
is defined as the ratio between the height of the peak and twice

the standard deviation of the noise (9)). Let us denote this dataset
as Spectral Dataset 1 (SD1).
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FIG. 1. First seven PCs and their corresponding normalized eigenvalues, obtained from (a) spectral data containing a single peak with varying amplitudes,
frequencies, linewidths, and phases, in presence of noise; (b, c, and d) after first, second, and tenth iteration of the PCA procedure and adjusting for phase and
frequency shifts variations.
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FIG. 3. Magnitude of convergence parameter R, displayed on log scale as a function of the first 10 iterations of the PCA correction procedure. Convergence

tests were preformed on simulated data sets, described in Table 1. (a) Convergence tests on datasets with increasing phase variations: SD2 (solid line) and SD3
(thin and dashed lines). (b) Convergence tests on datasets, containing large phase and frequency variations with increasing linewidth variations: SD4 (solid line),

SD5 (thin line). SD6 (dashed line), and SD7 (broken line).

To test for convergence and conditions that generated failure
of the procedure six more datasets (SD2 to SD7) of 500 spectra
were constructed. Table 1 summarizes the parameters of the
independent sets of uniform random variations for each set. Five
hundred different sets of white noise (mean of 0 and variance
of 1) were added to each dataset.

For the simulated data PCA was applied to a spectral region
of 201 points around the peak. The resultant first 7 PCs from
SD1 are shown in Fig. 1a together with their corresponding
normalized eigenvalues. The latter represent the fraction of total
variance in the data that each PC explains. As mentioned above,
the second and higher order PCs are mixtures of the individual
shapes, related to the presence of different variations in the data.

The vectors in F were calculated using the first PC in Fig. 1a.
The resultant offsets were calculated from Eq. [10]. The data
were then corrected for phase and frequency variations. PCA

TABLE 1
Spectral Parameters for Generating the Simulated

Spectral Datasets

Frequency Linewidth Phase
SNR variations (Hz) variations (Hz) variations (◦)

SD1 10–50 ±4 (0.1 lw) ±8 (0.2 lw) ±10
SD2 10–50 ±4 (0.1 lw) 0 ±60
SD3 10–50 ±4 (0.1 lw) 0 ±90
SD4 10–50 ±40 (2 1w) 0 ±90
SD5 10–50 ±40 (2 lw) ±8 (0.2 lw) ±90
SD6 10–50 ±40 (2 lw) ±10 (0.25 lw) ±90
SD7 10–50 ±40 (2 lw) ±20 (0.5 lw) ±90

Note. Simulated spectral datasets SD1 through SD7 consisted of 500 spectra.
Uniform random distributions within the ranges, specified above were generated

accordingly. A total of 500 independent distributions of white noise (mean of 0,
variance of 1) were added to each of the datasets.
was again applied, this time to the corrected dataset with the
result shown in Fig. 1b. The first PC now encompasses a much
larger fraction of the total variance; it is apparent that the fourth-
and higher order PCs are now noise related. Another itera-
tion yielded the PCs presented in Fig. 1c. At this point only
linewidth variations are left. To demonstrate the stability of the
procedure a total of 10 iterations were carried out with resultant
PCs, presented in Fig. 1d. As can be seen, the signal PCs are

-20-16-12-8-404

PCr

Pi γATP αATP βATP

ppm

FIG. 4. 31P spectra with the peaks labeled from a subset of the second

experimental cycle in the rat muscle kinetic experiment. The first 10 spectra are
acquired during stimulus and the last 10 during the recovery period.
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FIG. 5. (a) PCA analysis of the PCr peak in a rat muscle kinetic experiment. (Left) First seven PCs and their corresponding normalized eigenvalues. (Right)

Corresponding scores, displayed on absolute scale. (b) Spectral region, containing PCr and γ ATP peaks in five consecutive spectra from the region marked with a

star in (a).

quite stable although the higher order noise related PC vary as
expected.

Figure 2 shows correlation plots between the true and esti-
mated parameters. Since this dataset contains residual linewidth
variations, the peak areas (Fig. 2a) (R2 = 0.9994) were esti-
mated using

⇀

P1 and
⇀

P2 (Eq. [13]). In the absence of linewidth
variations the expected error of estimation, according to Eq. [11]
involves only

⇀

P1 and is 5.47 in this case. For data with linewidth
variations

⇀

P2 contributes as well and the standard deviation of
the difference between the true and the estimated area should be√

(5.47)2 + (−5.24)2 = 7.57. The calculated error, however, is
8.64. As expected, the estimated error underestimates the real
one slightly.
The total phase and frequency corrections (Figs. 2b and 2c)
are in excellent agreement with the true values: R2 = 0.9867
and 0.9791, respectively. The linewidth estimates (Fig. 2d) are in
good agreement with the true ones (R2 = 0.9679). However, in
this correlation plot it is apparent that the best fit is not a straight
line—a parabola fits the data much better (R2 = 0.9811). This
is due to residual second-order effects left in the data, related to
the uncorrected linewidth variations.

We performed further tests for convergence, using datasets
SD2 to SD7. The convergence parameter R from Eq. [18] is
estimated prior to and after each of 10 iterations of the PCA cor-
rection procedure and presented on log scale in Fig. 3. For small
frequency and phase variations (SD2) the procedure rapidly con-
verges and maintains stability (Fig. 3a, solid line). When we at-
tempted correcting the data in SD3 without controlling for peaks

shifting outside of the first PC, the procedure did not converge
well (Fig. 3a, dashed line). Alternatively, if we use the safeguard
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FIG. 6. (a) First four PCs from the PCr region with their corresponding n
(b) First four PCs from the Pi region with their corresponding normalized eigenv

described in the method section of only allowing shifts within
the shape of the first PC, the procedure converged after the fourth
iteration (Fig. 3a, fine line). This alignment procedure is used for
the analysis of the datasets SD4 to SC7. Again, despite the large
variations, the procedure is fully convergent for SD4 (Fig. 3b,
solid line). In the presence of linewidth variations in the data
(SD5 to SD7) we need to modify Eq. [18] to reflect that the
second PC will also contain signal:

R = V − V⇀
P1 − V⇀

P2

VN
. [19]

Using Eq. [19] we determine that the procedure converges
after the 5th iteration for SD5 to SD6 (Fig. 3b, thin and dashed
lines), while the mixture of large linewidth, frequency, and phase
variations cannot be completely overcome in the case of SD7
(Fig. 3b, broken line). We repeated the procedure 20 more iter-

ations in this case (data not shown) and after the 15th iteration
the estimate for R became stable, although still different from 1.
lues and scores, in the corrected for PCr variations dataset.

To demonstrate the procedure on real data a set of 992 31P
NMR spectra (162 MHz, TR 1.0 s, 16 scans, 450 pulse, 8K
sweep width, 1K data) were analyzed. These were acquired from
the gastroenemius muscle of a rat (10) stimulated isometrically
at 5 Hz for 2.1 min, followed by a 29.9-min recovery. This
stimulation–recovery cycle was repeated 8 times (4.2 h). Spec-
tra were zero-filled to 2K, linebroadened by 20 Hz lorentzian,
transformed to the frequency domain, and phased uniformly. The
chemical shift of phosphocreatine (PCr) was set to −2.52 ppm.
Figure 4 shows a subset of the spectra from the second experi-
mental cycle. The first 10 spectra are acquired during stimulus
and the last 10 during the recovery period. It is clear that dur-
ing the stimulus the PCr peak decreases and the peak of inor-
ganic phosphate (Pi) both increases in amplitude and shifts in
frequency. There are no obvious changes in the three peaks of
adenosine triphosphate (ATP).

The PCr peak was selected as a reference peak since it is un-

affected by changes in solution conditions under in vivo condi-
tions. The PCA correction procedure was applied to 125 points
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FIG. 7. PCs and their corresponding normalized eigenvalues and scor

around PCr [−1 ppm to −4 ppm]. The first 7 PCs (left) and
their corresponding scores (right) from this analysis are pre-
sented in Fig. 5a. From the scores of the first PC, it is clear that
there are 8 cycles associated with the behavior of PCr during the
experiment—when the muscle is stimulated PCr decreases and
when the stimulus is removed, PCr amplitude recovers back to
its starting value.

Note that PCA provides a quality check of the data, since
all irregularities in the cycles are detected automatically. First,
there are substantial variations throughout the dataset. Second,
it is apparent that the first and last two cycles of the experiment
are particularly irregular and that a more stable region of exer-
cise is exhibited in the 5 cycles in between. Finally, there are
brief jumps, such as the one marked with a star in Fig. 5a. To
investigate what happened at this time point, we extracted five
consecutive spectra from the region around the glitch and the
spectral region, containing PCr and γ ATP peaks presented in
5b. Note the splitting in the PCr peak in the middle spec-
, associated with a probable field jump. To continue the
s in the PCA corrected dataset from (a) αATP, (b) βATP, and (c) γ ATP.

analysis this spectrum was replaced with the previous spectrum.
We also discarded the data from the first and last two cycles. The
spectra in the remaining 5 experimental cycles were frequency
and phase adjusted. It took 5 iterations of the correction proce-
dure to remove all frequency and phase variations. The largest
frequency shifts applied to the data corresponded to 10 points in
the spectrum (∼1 linewidth of the PCr peak). The maximum and
minimum phase corrections were −56◦ and 28◦, respectively.

The phase and frequency adjusted spectra were baseline cor-
rected (11) and the PCA results are shown in Fig. 6a. The eigen-
value of the first PC increased to 99.88%, indicating that follow-
ing the removal of the instrumental variations, the signal in the
PCr region can be adequately represented by a single peak shape.
The improvement can also be seen from the scores of the first
PC, showing more regular behavior of the PCr amplitudes. The
shape of the second PC suggests that some linewidth variation
is left in the data. Its scores (although very small in magnitude,

relative to the scores of the first PC) have a regular character, re-
lated to the stimulus/recovery pattern, probably connected with
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FIG. 8. Mean values of Pi (�) and γ ATP (�) frequency shifts (in ppm)
calculated at the same time points in the 5 exercising cycles.

the small shimming variations due to slight muscle movement
in the magnet.

We next analyzed the Pi region. The PCs and their correspond-
ing scores showed both an increase in the peak amplitude during
exercise and a pH-related frequency shift (Fig. 6b).

The results of PCA analysis of the PCr-corrected data iden-
tified only one significant PC in the αATP and βATP regions
(Figs. 7a, 7b), while frequency shifts were detected in the γ ATP
positions (Fig. 7c). Note that in this analysis we observe an in-
tensity change in the ATP level (∼15% in each peak).

Since shifts of the γ ATP and Pi peaks are caused by pH
changes, their temporal behavior should track each other over
the stimulus–recovery cycle. To show this we calculated the shift
of both peaks in each spectrum. Figure 8 shows average shifts
at each point in the cycle calculated by averaging the five cy-
cles together. As expected, except for scale, the results are well
correlated (R2 = 0.71), providing excellent confirmation of the
overall procedure.

CONCLUSIONS

The results presented above demonstrate the effectiveness of a
PCA-based procedure for accurately quantifying peaks in large
spectral datasets in the presence of simultaneous variations in
amplitude, frequency, linewidth, and phase. This requires anal-
ysis in a 4-dimensional subspace derived from the peak line-
shape,

⇀

f. For its basis we choose
⇀

f, ∂
⇀f

∂ω
∂

⇀

f
∂τ

, and
⇀

f I, representing
the variations, rather than the basis defined by the first four PCs.
Projecting Eq. [6] onto

⇀

f, ∂
⇀

f
∂ω

, ∂
⇀

f
∂τ

, and
⇀

f I affects the efficiency of
the procedure on two levels. First, this projection automatically
recovers the amplitudes of the data along and only along the
directions we are seeking to quantify. Second, by using vectors

⇀

defined by only the first PC (f), rather than the second, third and
fourth PCs we avoid errors introduced from the fact that as the
ECTRAL QUANTITATION 173

corrections are applied these higher PCs become more and more
dominated by noise. A direct consequence of this is that if a given
type of variation, for example, frequency shifts, is not present in
the spectral data, the data component along ∂

⇀

f
∂ω

will be minimal,
noise-related, and the subsequent correction for frequency shifts
variations will not affect the data. This is the reason underlying
the stability and convergence of the present procedure.

In general, by performing the parameter estimation and cor-
rections in an iterative manner, the procedure can estimate and
correct quite substantial variations. In particular, there are no
limits of the magnitude of the phase variations (±90◦). The
procedure is also successful for quite substantial frequency
shifts (±2 linewidths). There are also no theoretical limits
for linewidth variations. We have been successful recovering
linewidth variations of quite large magnitude (several times the
average linewidth) for simulated data in the absence of noise.
The noise in the data, however, as noted above impedes the cor-
rection procedure for linewidths and thus the second order terms
in Eq. [6] cannot be reduced sufficiently. Our inability to correct
satisfactorily for linewidth variations is the underlying reason
for the procedure failure to converge to the true value in the case
of the last simulated dataset (SD7). Still, however, the procedure
is stable and does not degenerate with more iterations. If the goal
of the analysis is accurate linewidth estimations or reducing the
spectral shapes in a given spectral region to one (as it may be
for the purposes of classification) the corrections can be carried
out using only negative exponentials and broadening all lines in
the dataset.

The iterative manner of the proposed estimation and correc-
tion did not obstruct the procedure. It is acceptably fast (<10 s,
running on Compaq UNIX Alphastation 600 MHz) and as em-
phasized above very stable.

Elliot et al. (4) and Wang et al. (6) have shown that apply-
ing PCA to both the real and imaginary parts of the signal,
as expected, improves the accuracy of quantitation of the peak
parameters by a factor of

√
2. Future development of PCA to

spectral analysis will extend the procedure to the complex do-
main to include frequency and linewidth variations. The analyt-
ical considerations under Theory of this paper should serve as a
theoretical basis for this implementation.

APPENDIX: ALGORITHM DESCRIPTION

1. Read entire spectral width of complex spectra data in
frequency domain C(i, j).

i = 0, . . . , n − 1 (n– total number of spectra in C)
j = 0, . . . , k − 1 (k–total number of complex points in

each spectrum).

2. Define spectral peak region to be analyzed: k f to kl , k f <

kl , [k f , kl] ∈ [0, k − 1]
m = k f − kl + 1.
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7.2.2. Calculate C j (i) = Cδω
j (i) · exp(iϕ(i)).

7.3. Linewidth correction:2
174 STOYANOVA

3. Construct real data matrix D(i, j), where

i = 0, . . . , n − 1 (n−total number of spectra in C)
j = 0, . . . , m − 1 (m−total number of points in the selected

peak region).

4. Principal component analysis of D:
4.1. Calculate D’s covariance matrix (Eq. [3]).
4.2. Calculate eigenvectors Q and eigenvalues � of D’s
covariance matrix. The rows in Q are the principal com-
ponents

⇀

P1,
⇀

P2, ...

4.3. Calculate the scores S = DPT.
5. Construct the vectors in F = [

⇀

f, ∂
⇀

f
∂ω

, ∂
⇀

f
∂τ

,
⇀

f I].

5.1.
⇀

f = ⇀

P1/
∑m−1

j=0 P1 j ;

5.2. ∂
⇀

f
∂ω

, where




∂
⇀

f
∂ω

∣∣
j = f j+1 − f j , j = 0, . . . , m − 2

∂
⇀

f
∂ω

∣∣
m−1 = 0,

5.3. Calculation of ∂
⇀

f
∂τ

:
5.3.1. Construct a complex array g of size p, where p

is the closest power of two greater than or equal
to m. Set the imaginary part of g to 0 and the real
part as follows:

{
g j = f j , j = 0, . . . , m − 1

g j = 0, j = m, . . . , p − 1.

All of the remaining steps are executed in complex variables.
5.3.2. Calculate g′ through inverse FFT of g.
5.3.3. Zero half of the point in g′, i.e., construct

complex vector g′′ such that:

{
g′′

j = g′
j , j = 0, . . . ,

p
2 − 1

g′′
j = 0, j = p

2 , . . . , p − 1.

5.3.4. Apply 1-Hz lorentzian filter to g′′:

g′′′
j = g′′

j · exp(−π j�t), where �t is the dwell time.

5.3.5. Calculate ĝ = 2(g′′′ − g′′).
5.3.6. FFT of ĝ to FFT(ĝ).
5.3.7. The elements of ∂

⇀

f
∂τ

are the first m points of the
real part of the result in 5.3.6:

∂
⇀

f
∂τ

∣∣∣∣
j

= Re(FFT(ĝ)) j , j = 0, . . . , m − 1.

⇀I
5.4. Calculation of f
5.4.1. The first 3 steps are identical to 5.3.1 to 5.3.3.
D BROWN

5.4.2. Construct a vector g′′′ by swapping the real
and imaginary part of g′′, i.e.:

{
Re(g′′′) = Im(g′′)
Im(g′′′) = Re(g′′).

5.4.3. Calculate ĝ = 2g′′′.
5.4.4. FFT of ĝ to FFT(ĝ).
5.4.5. The elements of

⇀

f I are the first m points of the
real part of the result in

⇀

f I
j = Re(FFT(ĝ)) j , j = 0, . . . , m − 1.

6. Calculate correction factors W (n×4) matrix, using Eq. [9]
of the manuscript (we utilized the functions for matrix
multiplication and inversion in IDL and Java).

7. Correction procedure:
7.1. Frequency shifts:

7.1.1. Determine the frequency of the highest point
of the

⇀

P1, h(
⇀

P1).
7.1.2. Determine the frequencies of the points at the

half-height of the
⇀

P1 : h1 and h2.
7.1.3. Determine the frequencies of the highest points

in the spectra in D, h(i).
7.1.4. Calculate the shift for the i th spectrum in the

data

δω(i) = W (i, 2)/W (i, 1)

δω(i) = 0 if W (i, 1) = 0

δω(i) = h(
⇀

P1) − h(i) if δω(i) + h(i) < h1 or

δω(i) + h(i) > h2.

7.1.5. Inverse FFT complex data matrix C .
7.1.6. If the data were zero-filled as a preprocessing

step, zero as many points in the FIDs.
7.1.7. Calculate Cδω

j (i) = C j (i) · exp(i2π jδω(i)).
7.1.8. FFT of Cδω to frequency domain.

7.2. Phase correction:
7.2.1. Calculate the phase shift for the i th spectrum in

the data:

ϕ(i) = W (i, 4)/W (i, 1)

ϕ(i) = 0 if W (i, 1) = 0

ϕ(i) = ϕ(i) − π/2 if W (i, 1) < 0 and W (i, 4) < 0

ϕ(i) = ϕ(i) + π/2 if W (i, 1) < 0 and W (i, 4) > 0.

ϕ

2 This step is executed on the last iteration of the correction procedure.
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7.3.1. Calculate the linewidth correction for the i th
spectrum in the data:

δτ (i) = W (i, 3)/W (i, 1)

δτ (i) = 0 if W (i, 1) = 0.

7.3.2. Inverse FFT complex data matrix Cϕ .
7.3.3. If the data were zero-filled as a preprocessing

step, zero as many points in the FIDs.
7.3.4. Calculate Cδτ

j (i) = Cϕ

j (i) · exp(πδτ (i) j�t).
7.3.5. FFT Cδτ to frequency domain.
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